Adversarial Robustness against the Union of Multiple Perturbation Models

Pratyush Maini¹, Eric Wong², J. Zico Kolter^{2,3}

https://github.com/locuslab/robust_union

¹Indian Institute of Technology Delhi New Delhi, India ²School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213, USA ³Bosch Center for Artificial Intelligence Pittsburgh, PA 15222, USA

Overview

- Robustness to multiple perturbation types is non-trivial, yet important
- Prior baselines can be difficult to tune and have suboptimal trade-offs
- MSD offers consistent benefits on both MNIST and CIFAR10

Comparison of MSD with Baselines

Datasets

Deep networks are vulnerable to adversarial attacks

Imperceptible Adversaries can fool deep networks

The attack is staged using the *'Fast Gradient Sign Method'* which restricts an adversary within a small ℓ_{∞} ball of radius ϵ_{∞} around the original image

Exclusivity of different ℓ_p balls

Different perturbation types have non-overlapping regions

Exclusivity of different ℓ_p balls

Different perturbation types have non-overlapping regions

*The distinction is more significant in high-dimensional spaces

PGD adversary for ℓ_∞ attacks

PGD (x, y, θ) :

 $\delta = 0 // \text{ or randomly initialized}$ for j = 1 ... N: $\delta := \delta + \alpha \cdot \operatorname{sign}(\nabla_{\delta} \ell(f_{\theta}(x_i + \delta), y_i)) // \text{ step}$ $\delta := \max(\min(\delta, \epsilon), -\epsilon) // \text{ project}$ end for

Adversaries confined within different ℓ_p balls have different optimal perturbations

Different perturbation types have different characteristics

 ℓ_{∞} attack

 $\max |\delta_i| \le \epsilon_{\infty}$

 $\ell_2 \text{ attack}$ $\sqrt{\sum |\delta_i|^2} \leq \epsilon_2$

 ℓ_1 attack $\sum |\delta_i| \leq \epsilon_1$

Adversarial Training

[Goodfellow et. al. 2014]

repeat :

Select minibatch \mathcal{B} for $(x, y) \in \mathcal{B}$, $\delta^*(x | y, \theta) = PGD(x, y, \theta)$ $x_{adv} = x + \delta^*(x, y, \theta)$ end for // Update parameters $\theta \coloneqq \theta - \frac{1}{|\mathcal{B}|} \sum_{x,y \in \mathcal{B}} \nabla_{\theta} \ell(f_{\theta}(x_{adv}), y)$

until convergence

Robustness does not transfer across perturbation types

Transfer of Robustness across Perturbation Types

Adversarially Robust Models

Robustness against multiple perturbation types is important

- Adversaries can attack a system irrespective of the perturbation ball it was 'trained' to be robust against.
- Robustness against 'all' types of 'imperceptible' noises is essential for real world deployment.

Goal: Develop an algorithm to train a single model robust against multiple perturbation types

Naïve approaches

Let S represent a set of threat models, such that $p \in S$ corresponds to the ℓ_p threat model $\Delta_{p,\epsilon}$

• MAX (Worst-case Perturbation) (Tramer et. al. 2019)

$$\delta_p = \arg \max_{\delta \in \Delta_{p,\epsilon}} \ell(f_{\theta}(x + \delta), y) \qquad \delta^* \approx \arg \max_{\delta_p} \ell(f_{\theta}(x + \delta_p), y)$$

• AVG (Train over all perturbations) (Tramer et. al. 2019)

$$\min_{\theta} \sum_{i} \sum_{p \in S} \max_{\delta \in \Delta_{p,\epsilon}} \ell(f_{\theta}(x_i + \delta), y)$$

While the naïve approaches work to some extent, they converge to suboptimal local minima and are difficult to tune.

Multi Steepest Descent

MSD (x, y, θ) :

```
\delta = 0 // \text{ or randomly initialized}
for j = 1 ... N:
for p \in \{1, 2, \infty\}:
\delta_p = \text{step-and-project} (\delta, x, y, p; \theta)
end for
\delta = \operatorname{argmax}_{\delta_p} \ell(f_{\theta}(x + \delta_p), y)
end for
```


Multi Steepest Descent

MSD (x, y, θ) :

 $\delta = 0 // \text{ or randomly initialized}$ for j = 1 ... N: for $p \in \{1, 2, \infty\}$: $\delta_p = \text{ step-and-project } (\delta, x, y, p; \theta)$ end for $\delta = \operatorname{argmax}_{\delta_p} \ell(f_{\theta}(x + \delta_p), y)$ end for

How do MSD attacks look

MSD is significantly more robust on MNIST

- Evaluation is performed over a wide-suite of 15 gradient-based and gradient-free attacks
- MSD significantly improves over naïve approaches on the MNIST dataset.

Gradient-based Attacks

Fast Gradient Sign Method Projected Gradient Descent Momentum Iterative Method DeepFool Attack DDN Attack C&W Attack

Gradient-free Attacks

Salt & Pepper Attack Pointwise Attack Gaussian Noise Attack Boundary Attack

MSD is significantly more robust on MNIST

Adversarially Robust Models

MSD is less sensitive to hyperparameter changes

The algorithm is much more stable to train and does not require any heuristic adjustments for different datasets unlike previous work.

Worst Case Accuracy (in %)

MSD improves over previous baselines on CIFAR10

• The results on both MNIST and CIFAR10 have been reproduced.¹

Adversarially Robust Models

¹David Stutz, Matthias Hein and Bernt Schiele. (ICML 2020) Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks

Conclusions from multiple perturbation adversarial training

- PGD training can be extended to make models robust to multiple perturbation types
- Naïve approaches
 - Can be highly variable (across parameters and datasets)
 - Are difficult to tune
 - Converge to suboptimal local minima
- MSD consistently outperforms them across both MNIST and CIFAR10

Different perturbation types have nonoverlapping regions

٠

Adversarial Accuracy (in %)

Overview

- Robustness to multiple perturbation types is non-trivial, yet important
- Prior baselines can be difficult to tune and have suboptimal trade-offs
- MSD offers consistent benefits on both MNIST and CIFAR10

Comparison of MSD with Baselines

MSD (x, y, θ) :

```
\delta = 0 // or randomly initialized
for j = 1 ... N:
for p \in \{1, 2, \infty\}:
\delta_p = \text{step-project} (\delta, x, y, p; \theta)
end for
\delta = \operatorname{argmax}_{\delta_p} \ell(f_{\theta}(x + \delta_p), y)
end for
```

MAX AVG MSD 60 40 20 0 MNIST CIFAR10

Datasets