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Overview

• Robustness to multiple perturbation types is non-trivial, yet important

• Prior baselines can be difficult to tune and have suboptimal trade-offs

• MSD offers consistent benefits on both MNIST and CIFAR10
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Deep networks are vulnerable to adversarial attacks

[Goodfellow et al., 2014]

Imperceptible Adversaries can fool deep networks

The attack is staged using the ‘Fast Gradient Sign Method’ which restricts 
an adversary within a small ℓ" ball of radius #" around the original image
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Exclusivity of different ℓ" balls

Different perturbation types have non-overlapping regions
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Exclusivity of different ℓ" balls

Different perturbation types have non-overlapping regions
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PGD adversary for ℓ" attacks

PGD (' , ) , * ) :

- = 0 //	or	randomly	initialized
for 0 =	1…N :		
- ∶= - + 3 4 sign(9:ℓ ;< => + - , ?> )//	step
- ∶= max(min -, C , −C) //	project	

end	for
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Adversaries confined within different ℓ" balls have different 
optimal perturbations

Different perturbation types have different characteristics

ℓ# attackℓ$ attack ℓ% attack
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Adversarial Training

repeat :	
Select	minibatch	ℬ
for ( / , 1 ) 3 ℬ , 	

4 ∗ ( / | 1 , 7 ) = PGD / , 1 , 7
/<=> = / + 4∗ /, 1, 7

end	for
//	Update	parameters	
7≔ 7 - A

|ℬ|
∑C,D E ℬ ∇7ℓ(HI(/<=>), 1)

until	convergence

[Goodfellow et. al. 2014]
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[Kolter & Madry, 2018]



Robustness does not transfer across perturbation types
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Robustness against multiple perturbation types is important

• Adversaries can attack a system irrespective of the perturbation ball it was ‘trained’ to be 
robust against.

• Robustness against ‘all’ types of ‘imperceptible’ noises is essential for real world 
deployment.

Goal: Develop an algorithm to train a single model robust against multiple perturbation types
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Naïve approaches

Let ! represent a set of threat models, such that " ∈ ! corresponds to the ℓ% threat model Δ',)

• MAX (Worst-case Perturbation) (Tramer et. al. 2019)

• AVG (Train over all perturbations) (Tramer et. al. 2019)

While the naïve approaches work to some extent, they converge to suboptimal local minima  
and are difficult to tune.
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Multi Steepest Descent

MSD (% , ' , ( ) :

+ = 0 //	or	randomly	initialized
for . =	1…N :		
for	/ ∈ {1, 2,∞}:

+6 = step−and−project (+, C, D, /; F)
end	for
+ = argmaxHI ℓ(KL(C + +6), D)

end	for
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Multi Steepest Descent

MSD (% , ' , ( ) :

+ = 0 //	or	randomly	initialized
for . =	1…N :		
for	/ ∈ {1, 2,∞}:

+6 = step−and−project (+, C, D, /; F)
end	for
+ = argmaxHI ℓ(KL(C + +6), D)

end	for
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How do MSD attacks look
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• Evaluation is performed over a wide-suite of 15 gradient-based and gradient-free attacks

• MSD significantly improves over naïve approaches on the MNIST dataset.

MSD is significantly more robust on MNIST
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Gradient-free Attacks

Salt & Pepper Attack
Pointwise Attack
Gaussian Noise Attack
Boundary Attack

Gradient-based Attacks

Fast Gradient Sign Method
Projected Gradient Descent
Momentum Iterative Method

DeepFool Attack
DDN Attack
C&W Attack



MSD is significantly more robust on MNIST
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MSD is less sensitive to hyperparameter changes

The algorithm is much more stable to train and does not require any heuristic adjustments 
for different datasets unlike previous work.
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MSD improves over previous baselines on CIFAR10

181David Stutz, Matthias Hein and Bernt Schiele. (ICML 2020)
Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks

• The results on both MNIST and CIFAR10 have been reproduced.1



Conclusions from multiple perturbation adversarial training

• PGD training can be extended to make models robust to multiple 
perturbation types

• Naïve approaches
• Can be highly variable (across parameters and datasets)

• Are difficult to tune

• Converge to suboptimal local minima

• MSD consistently outperforms them across both MNIST and CIFAR10 

https://github.com/locuslab/robust_union
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Overview

• Robustness to multiple perturbation types is 
non-trivial, yet important

• Prior baselines can be difficult to tune and have 
suboptimal trade-offs

• MSD offers consistent benefits on both MNIST 
and CIFAR10
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MSD (% , ' , ( ) :

+ = 0 //	or	randomly	initialized
for . =	1…N :		
for	/ ∈ {1, 2,∞}:
+6 = step−project (+, @, A, /; C)
end	for
+ = argmaxFG ℓ(IJ(@ + +6), A)

end	for

ℓL ball

ℓM ball

ℓN ball

Different perturbation 
types have non-

overlapping regions


