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Overview

* Robustness to multiple perturbation types is non-trivial, yet important
* Prior baselines can be difficult to tune and have suboptimal trade-offs
« MSD offers consistent benefits on both MNIST and CIFAR10
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Deep networks are vulnerable to adversarial attacks

Imperceptible Adversaries can fool deep networks

“panda” “gibbon”
57.7% confidence 09.3% confidence
[Goodfellow et al., 2014]

The attack is staged using the ‘Fast Gradient Sign Method’ which restricts
an adversary within a small £, ball of radius €, around the original image
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Exclusivity of different £, balls

Different perturbation types have non-overlapping regions

£, ball

£, ball
max |§;| < €4

£, ball
JZW <e

OO

D
l.
7 S
4] W



Exclusivity of different £, balls

Different perturbation types have non-overlapping regions
*The distinction is more significant in high-dimensional spaces
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PGD adversary for ¢, attacks

PGD (x,y,0):

6 = 0 //orrandomly initialized
forj=1..N:

end for




Adversaries confined within different fp balls have different
optimal perturbations

Different perturbation types have different characteristics

¢, attack ¢, attack ¢, attack

max |§;| < €o z|5i|2 <€ Z|5i| S €




Adversarial Training

[Goodfellow et. al. 2014]

repeat :
Select minibatch B
for (x,y) € B,
§*(x|y,8) =PGD(x,y,0)
Xadv = X + 5*(36,}/, 9)
end for
// Update parameters

1
0:=0 - a Zx,y €B VH'B(fQ (xadv)» y)
until convergence

Test Error, epsilon=0.1
74.4%

41.7%

26%
1.1% 0.9% \ 2:8%

ConvNet Robust ConvNet
mClean mFGSM mPGD

[Kolter & Madry, 2018]



Robustness does not transfer across perturbation types

Transfer of Robustness across Perturbation Types
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Robustness against multiple perturbation types is important

» Adversaries can attack a system irrespective of the perturbation ball it was ‘trained’ to be
robust against.

» Robustness against ‘all’ types of ‘imperceptible’ noises is essential for real world
deployment.

Goal: Develop an algorithm to train a single model robust against multiple perturbation types
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Naive approaches

Let S represent a set of threat models, such that p € S corresponds to the £, threat model A,

 MAX (Worst-case Perturbation) (Tramer et. al. 2019)

o, = arg max L(fa(x +6),y) 6" = argrr(lsaxf(fg(x + 5p),y)
p

S€EA, ¢
* AVG (Train over all perturbations) (Tramer et. al. 2019)

mlnz max €(fg(x; +6),y)

SEA) ¢
I pES

While the naive approaches work to some extent, they converge to suboptimal local minima
and are difficult to tune.
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Multi Steepest Descent

MSD (x,y,0):

6 =0 //orrandomly initialized
forj=1..N:
forp € {1, 2, 0}:
8, = step—and—project (6,x,y,p; 0)
end for
6= argmaxs, (fo(x +6p),y)
end for
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Multi Steepest Descent

MSD (x,y,0):

6 =0 //orrandomly initialized
forj=1..N:
forp € {1, 2, o}:
8, = step—and—project (6,x,y,p; 0)
end for
6= argmaxs,, t(fo(x +6p),y)
end for




How do MSD attacks look

Original Adversarial

Original

Adversarial
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MSD is significantly more robust on MNIST

» Evaluation is performed over a wide-suite of 15 gradient-based and gradient-free attacks
« MSD significantly improves over naive approaches on the MNIST dataset.

Gradient-based Attacks

Fast Gradient Sign Method
Projected Gradient Descent
Momentum lterative Method

DeepFool Attack
DDN Attack

C&W Attack

Gradient-free Attacks

Salt & Pepper Attack
Pointwise Attack

Gaussian Noise Attack
Boundary Attack
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MSD is significantly more robust on MNIST

Adversarial Robustness on the MNIST dataset
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MSD is less sensitive to hyperparameter changes

The algorithm is much more stable to train and does not require any heuristic adjustments
for different datasets unlike previous work.
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MSD improves over previous baselines on CIFAR10

* The results on both MNIST and CIFAR10 have been reproduced.’
Adversarial Robustness on the CIFAR10 dataset
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"David Stutz, Matthias Hein and Bernt Schiele. (ICML 2020) Adversarially Robust Models

Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks



Conclusions from multiple perturbation adversarial training

« PGD training can be extended to make models robust to multiple
perturbation types

« Naive approaches
» Can be highly variable (across parameters and datasets)
« Are difficult to tune
» Converge to suboptimal local minima

* MSD consistently outperforms them across both MNIST and CIFAR10

https://qithub.com/locuslab/robust union
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Different perturbation
types have non-
overlapping regions

Adversarial Accuracy (in %)

Overview M5D (x,y, 0):
6 = 0 //orrandomly initialized

 Robustness to multiple perturbation types is forj=1..N:

non-trivial, yet important for p € {1,2, oo}:

Prior baselines can be difficult to tune and have 8, = step—project (8, x,y,p; 6)

suboptimal trade-offs end for

MSD offers consistent benefits on both MNIST § = argmax 5, (fo(x +6,),¥)

and CIFAR10
end for
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