Dataset Inference: Ownership Resolution in Machine Learning

Pratyush Maini ^{1,2,3}

Mohammad Yaghini^{2,3}

Nicolas Papernot 2,3

Overview

- Why is model privacy important?
 - Primer on Model Extraction and Membership Inference
- Model Stealing Threat Models
- Dataset Inference
 - Train-Test Prediction Margin
 - Blind Walk
 - Confidence Regressor
 - Ownership Resolution
 - Results

Developing High-performing ML models is expensive

Computational Cost

Private Data

Intellectual Contribution

Model Stealing Attacks are a realistic threat

Copying a model's predictions with significantly lesser cost at the adversary's end.

Model Extraction

 Using predictions from an ML API (victim) to train a surrogate model using some publicly available dataset.

Membership Inference

• Inferring the membership of a data-point in a model's training set.

Model Stealing Attacks: How?

An adversary may gain varying degrees of access to your 'Knowledge'

Data Access: A_D

- -- Distillation
- -- Train on different architectures or hyperparameters

Query Access: A_Q

- -- Label Access
- -- Logit Access

Model Access: A_M

-- Zero shot learning -- Fine tuning

Dataset Inference Exploits Train-Test Prediction Certainty

Prediction Margin if x was in Train set

Prediction Margin if x was in Test set

Analysis on a Linear Model

Binary ClassificationLinearly SeparableGaussian Noise
$$y \sim \{-1, +1\};$$
 $\mathbf{x_1} = y \cdot \mathbf{u} \in \mathbb{R}^K,$ $\mathbf{x_2} \sim \mathcal{N}(0, \sigma^2 I) \in \mathbb{R}^D$ $h(\mathbf{X}) = \mathbf{w_1} \cdot \mathbf{x_1} + \mathbf{w_2} \cdot \mathbf{x_2}$ Linear Classifier

Theorem 1 (Train-Test Margin) Given a linear classifier h(.) trained to classify inputs $(\mathbf{X}, y) \in S \subset \mathcal{D} \subset \mathbb{R}^{K+D}$, the difference in the expected prediction margin for \mathbf{X} in S and $\mathcal{D} \setminus S$, given by $\mathbb{E}_{X \sim S} [y \cdot h(\mathbf{X})] - \mathbb{E}_{X \sim \mathcal{D} \setminus S} [y \cdot h(\mathbf{X})] = D\sigma^2$.

$$\begin{split} \mathbf{w_1} &\leftarrow \mathbf{w_1} + \alpha y^{(i)} \mathbf{x_1}^{(i)} \\ \mathbf{w_2} &\leftarrow \mathbf{w_2} + \alpha y^{(i)} \mathbf{x_2}^{(i)} \end{split}$$

Dataset Inference Succeeds when Membership Inference Fails

Theorem 2 (Failure of MI) Given a linear classifier h(.) trained on $S \subset D \subset \mathbb{R}^{D+K}$, the probability that an adversary \mathcal{M} correctly predicts the membership of inputs randomly belonging to the training or test set, $\mathbb{P}_{X \sim \mathcal{R}} \left[\mathcal{M}(\mathbf{X}, h(.)) = b \right] = 1 - \Phi \left(-\sqrt{\frac{D}{2m}} \right)$, and decreases with |S| = m. Moreover, $\lim_{m \to \infty} \mathbb{P}_{X \sim \mathcal{R}} \left[\mathcal{M}(\mathbf{X}, h(.)) = b \right] = 0.5$.

Theorem 3 (Success of DI) Choose $b \leftarrow \{0,1\}$ uniformly at random. Given an adversary's linear classifier h(.) trained on $\mathcal{D} \setminus \mathcal{S} \subset \mathbb{R}^{K+D}$, if b = 0, and on $\mathcal{S} \subset \mathcal{D}$ otherwise. The probability \mathcal{V} correctly decides if an adversary stole its knowledge $\mathbb{P}[\psi(\mathcal{D}, h(.)) = b] = 1 - \Phi\left(-\frac{\sqrt{D}}{2}\right)$. Moreover, $\lim_{D\to\infty} \mathbb{P}[\psi(\mathcal{D}, h(.)) = b] = 1$.

How do you calculate the prediction certainty?

Blind Walk : Black-box method to estimate the prediction certainty

- a. Sample Random Noise
- b. Take Small Steps in that direction till you reach class boundary
- c. Aggregate the distance over many noise directions to create a feature embedding.

$$\operatorname{emb}_{(\mathbf{X},y)}^{i}(f) = \min_{k \in \mathbb{N}} d(x, x + k\delta_{i});$$

s.t. $f(x + k\delta_{i}) = t; \ t \neq y$

Training an Auxiliary Regressor

Training Set

Sample inputs from the train & test set

Test Set

Training Set

Distance embedding for each input

Step 2: Generate embeddings for prediction margin

Test Set

Distance embedding for each input

Training Set

Confidence Scores for each Embedding

Step 3: Pass embeddings through auxiliary regressor

Test Set

Confidence Scores for each Embedding

Training Set

Aggregate Confidence Distribution

Step 4: One sided t-Test:

 $H_0: \mu_{test} \ge \mu_{train}$

If stolen, H_0 would be rejected.

Test Set

DI is successful across CIFAR10, SVHN, CIFAR100 and ImageNet

p-value against number of revealed samples (m)

Dataset Inference resolves ownership by revealing fewer than 60 private samples, with FPR < 1%

Key Take-aways from Dataset Inference (DI)

- 1. Requires few private points to prove ownership.
- 2. Can be performed in less than 30,000 queries to the adversary.
- 3. White-box access is not essential to DI
- 4. Out-of-the-box solution that does not require overfitting or retraining.
- 5. Does not have a trade-off with task accuracy.